
1

The Practical Guide to Deploying Large Language Models

The Practical Guide
to Deploying Large
Language Models

G
ui

de

32

The Practical Guide to Deploying Large Language Models

2

Table of Contents Introduction: Unleashing the Power of LLMs in
Production Environments

Introduction: LLM Applications and Components LLMs have emerged as a remarkable force and are reshaping how businesses communicate, analyze
data, and innovate.

This guide offers a comprehensive exploration of the components of LLM applications, deployment
tradeoffs, and pragmatic considerations that are essential for successfully orchestrating LLMs in
production. The aim of this guide is to equip you with the knowledge you need to perform scalable,
efficient, guided inference with considerations around monitoring and debugging.

Large Language Models represent an important evolution in enterprise AI capabilities. Having been
trained on massive datasets, these models gain broad knowledge that serves as a strong foundation
for various applications. Their versatility enables them to be easily adaptable to new use cases
beyond their original training objective.

There’s a variety of ways to apply LLMs effectively:

• Leverage the models’ existing knowledge by asking them for predictions or inferences.
• Fine-tune the models by providing additional domain-specific training data
• Use the models for transfer learning by taking learnings and applying them to new tasks

With proper implementation, LLMs can enable robust and scalable AI systems that drive true
business value. Curious about how LLMs can enhance your organization’s capabilities
and effectiveness?

Here are some examples of LLM applications:

The Challenges and Compromises in Production Deployment

Best Practices for Orchestrating LLMs in Production

Conclusion: Empowering your Business with LLMs

About Seldon

01

02

03

04

05

The Practical Guide to Deploying Large Language Models

Provide answers, product recommendations, and
conversational search that answers your customer’s questions.

Auto-generate code, explain and document code, and get
suggestions on how to improve it.

Change the way you research by getting answers to questions
using a large collection of texts.

Read documents, get summaries of key details, and discover
user sentiment in those documents.

Make more content including blog posts, emails, ad copy, and
outlines based prompts, faster.

Change text from one language to another and adjust the
writing style to change the tone or reading level.

Customer Service Chatbot

Code Completion

AI Assisted Search

Document Understanding

Content Generation

Translation

5

The Practical Guide to Deploying Large Language Models

4

The Practical Guide to Deploying Large Language Models

GPT-3.5 cost much less for input and output tokens* and runs significantly faster than other Large
Language Models. These advantages incentivize developers to optimize prompts to maximize its
accuracy. Prompt engineering has its limitations, so you might choose to fine-tune open source
models like LLama 2 for specific use cases. Implementing this approach comes with more training
and deployment complexity. However, when done correctly, it can reduce costs and latency while
improving accuracy.

Prompt Template:
Prompt engineering is a key activity for LLM applications, much like the experimentation process in
machine learning. There’s a wide variety of prompting techniques that can improve results. The first
technique is to provide clear instructions and write the steps needed to finish a task.

“Zero-shot” prompts work, however “few-shot” prompts with examples can tailor responses
even further. Phrases like “show your work” or “step-by-step” make the model reason iteratively,
increasing accuracy. Using this “chain-of-thought” prompting can be even more effective when
examples of reasoning logic are used.

LLM models are growing stronger every day, and regularly gaining new capabilities. LLMs allow for
quick prototyping, but they can get quite complex as more components are added to improve the
functionality and accuracy of the outputs.

LLM Components and Reference Architecture

The reference architecture for LLM applications has begun to develop recently. Depending on your
particular use case, an application can be built by using the following components:

LLM Model:
Selecting an LLM model depends on a variety of factors, but the primary elements are the number
of parameters (size of the model) and whether it is open source or behind an API. It’s possible for
models to have tokenizers and embedded models built in, while others may require you to run these
steps yourself. Tokenizers break down input text into smaller chunks, while embedding models turn
those chunks into numeric vectors that LLMs can understand.

OpenAI’s GPT models are an easy starting point, because they’re quick to get up and running due to
how adaptable the model is. Sometimes, a long context window might be needed if performing a lot
of in-context learning, which makes Claude 2 a great choice. However, using such large models can
be expensive and time consuming.

Trade-offs between open/closed sourced LLMs and model size

1 * Kojima et al. (2022)

Examples of prompting techniques 1

https://openai.com/pricing
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916

7

The Practical Guide to Deploying Large Language Models

6

The Practical Guide to Deploying Large Language Models

cite the specific database chunks it used when generating its response. This adds a degree of trust
and counters the risk of hallucinations.

Agents and Tools:
Large Language Models can enable powerful applications, but relying solely on them has some
fundamental limitations. They aren’t capable of prompting themselves, making external API calls, or
retrieving web pages.

However, LLM agents can utilize additional tools to take actions beyond just generating text. For
example, an LLM agent can execute code, search the web, lookup databases, or perform math
calculations. The OpenAI framework allows agents to decide which tools or “functions” to use and
return a JSON object with the arguments to call the function. This enables a whole range of new use
cases like booking flights, generating images, or sending emails.

Some frameworks allow agents to complete tasks iteratively. They can break down tasks into
subtasks and “self-ask” to gather more relevant information. Chains of actions can be executed to
progressively move towards a correct answer. The concept of combining reasoning and using tools
led to the emergence of the ReAct framework.

ReAct thinks, takes an action, observes the result, and decides the next step in a loop until finding a
solution. This outperforms baseline LLMs, but evaluating performance and achieving reliability is still
challenging. There are also security concerns with enabling LLMs to take actions like posting on
the web.

Templates can be created with your prompts and reused with the LLM application. These templates
can be integrated into your code by using a simple f-string or str.format() or alternatively, libraries
that offer more control like LangChain, Guidance, and LMQL can be used. Chat completion APIs rely
on careful prompt engineering to perform well. First, the conversational task needs to be assigned
clearly in a system prompt, so that the LLM understands its role.

Then you can give the LLM examples of user questions and high quality responses. Experiment
systematically on these prompt templates to achieve improved model performance. The goal is to
teach the model effectively. Evaluate model outputs by either using human feedback or
automated scoring.

Vector Database:
Several use cases will require information the LLM hasn’t been previously trained on. This could
include a company’s private knowledge base, current events, research papers, or other documents.
A model’s context window that it can directly access is limited, so for example, prompting them
with an entire book’s content will not work. Adding a supplementary external database can provide
access to information needed. This technique is known as
retrieval-augmented generation or RAG.

Vector databases are not a new concept, but have recently surged in popularity as they are used
with LLM applications. In this technique, relevant external information is first divided into blocks of
text. Then these blocks are tokenized, and run through an embedding model. Afterwards, they’re
added into a vector database, such as Pinecone, Chroma, Quadrant or pg vector.

When a prompt is given to the language model, it is also vectorized. The database finds similar
vectors to retrieve relevant entries from the database. These entries are then provided along with
the original prompt to give the model necessary information to respond coherently. The LLM may

Simple retrieval augmented generation (RAG) flow

ReAct REPL Agent 2

2 https://peterroelants.github.io/posts/react-repl-agent/

https://peterroelants.github.io/posts/react-repl-agent/
https://peterroelants.github.io/posts/react-repl-agent/

9

The Practical Guide to Deploying Large Language ModelsThe Practical Guide to Deploying Large Language Models

8

Orchestrator:
Orchestrators like LangChain and LLamaIndex tie together the various components needed for LLM
applications. They provide frameworks to abstract and integrate LLMs, prompt templates, data
sources, agents, and tools. Templating frameworks like Guidance and LMQL allow creating complex
prompts that define inputs, outputs and rules. Orchestrators can also boost performance through
memory management, token healing, beam search, session management, error handling, and more.
This logical orchestration empowers developers to build differentiated, specialized, and hardened
use cases.

Monitoring:
Given the unpredictability and rapid evolution of LLM models, you should monitor your LLM
applications in production. Standard metrics like CPU usage, GPU, memory usage, latency and
throughput should be tracked. Additionally, drift and anomaly detection can identify changing or
unusual inputs over time. Logging requests and responses enables evaluation of potentially harmful
outputs. With complex LLM pipelines, tracing data flow provides visibility into overall system
behavior. Tools like LangSmith and Seldon Core v2 allow tracing prompt evolution through agent
chains. Seldon Core v2 has a data-centric deployment graph that enables robust monitoring via drift
detection and explainability features.

LLMs have different inference characteristics than other kinds of machine learning models.

 Sequential Token Generation

LLM inference is autoregressive, which means that the current token generation is based on previous
token generation. This sequential order causes high latency, especially when generating longer texts.

The variable output length makes latency unpredictable before execution. For example, answering
“What is the capital of France?” will be much faster than summarizing a long document. This makes
workload scheduling more challenging.

 Variable Sized Input Prompts

Users can leverage different prompt templates that are zero or few shot in order to get better results
from their LLMs. The length of the different types of prompts will directly affect how much work the
model needs to do to process the input. Longer prompts require more compute and memory due to
the attention mechanism in transformers, so they scale quadratically as prompt length increases.
Batching prompts of different lengths may also be challenging. One strategy is to include extra
padding to match the longest prompt, although this isn’t very efficient from a
computational standpoint.

 Low Batch Size

Large Language Models usually have small batch sizes during inference, unlike in training and
finetuning. Small batches cause low GPU usage and can create bottlenecks on IO. This isn’t ideal as
users want to fully utilize expensive GPUs.

 Attention Key-Value (KV) Cache

A common optimization for autoregressive token generation is caching previous tokens as input for
the current token generation. This reduces recomputation but increases memory footprint, which
can become substantial when dealing with multiple requests.

These characteristics create two main deployment challenges:

• LLMs have large memory requirements that can bottleneck deployments and affect
hardware choices

• Scheduling strategies are important for user experience and hardware utilization. Depending on
the application, different configuration choices will need to be made for the best optimization

The Challenges and Compromises in Production Deployment

So far, you’ve discovered the different applications LLMs can be used for, as well as what
components make up the LLM architecture. Now, we’re going to explore the challenges users
experience when deploying LLMs within their own environments. You will learn the different
techniques to overcome these challenges and make your deployments run smoother.

Customers can use third-party models like ChatGPT-4 in their applications, but relying on external
endpoints has downsides. Users might have security and privacy concerns sending data to a 3rd
party. The third-party model might also not fit their particular use case in terms of performance or
deployment needs.

Instead, open source models like Llama2 and Falcon are now getting closer to proprietary closed
source models in quality. This lets users fine-tune based on relevant data for their unique task. They
can also optimize deployment specifically for their application’s needs.

LLM Inference Challenges

11

The Practical Guide to Deploying Large Language Models

10

The Practical Guide to Deploying Large Language Models

LLM Memory Optimizations

The current trend is for ever-larger language models, as increased parameters boost their learning
potential. ChatGPT-4 is six times larger than ChatGPT-3, and is likely to be in the trillion parameter
range. It’s not clear if this trend is going to continue, given that their memory requirements for
inference become impractical on current GPUs. This requires multiple terabytes of memory which
poses a major challenge. When an LLM has a trillion parameters to load at inference time, it requires
at least 2 TBs of GPU HBM (assuming fp16 precision).

Next, we’ll explore the many options that users can use to get around such a memory bottleneck.

One solution for deploying LLMs that don’t fit on a single GPU is to use parallelism (e.g. sharding) by
splitting the model across multiple GPUs.

However, capacity isn’t the only concern. Memory bandwidth matters as well. Lots of data movement
slows performance, particularly with small batch sizes where workloads tend to be IO bound.

For instance, a document summarisation batch workload requires a different strategy than an
interactive chat application. Careful optimization based on the use case is required to avoid
overprovisioning expensive GPU hardware or hurting end users’ latencies.

Optimizing LLM deployment requires balancing multiple factors in a use-case dependent manner.
There is no one-size-fits-all solution.

Memory requirements for language models go beyond just model parameters. Attention layer
calculation, cache management, and large prompts for in-context learning all add substantial
requirements. The demand for in-context learning in LLM applications such as retrieval augmented
generation (RAG) adds more pressure on the memory requirement.

For example, Claude 2 allows up to 100k tokens to be used as input prompts, which could need 1MB
per token cached. Paired with several concurrent requests and big prompts, KV cache can easily get
into the terabyte range.

Trend of state-of-the-art NLP model sizes with time

https://the-decoder.com/gpt-4-has-a-trillion-parameters/
https://the-decoder.com/gpt-4-has-a-trillion-parameters/

The Practical Guide to Deploying Large Language Models

12

The Practical Guide to Deploying Large Language Models

13

One strategy to lower the amount of memory an LLM requires is to use a form of compression. There
are a few different techniques for compressing the models that include Distillation, Pruning, and
Quantization. We will focus on quantization because this strategy can be applied at deployment time
and doesn’t require the model to be re-trained.

Quantization saves memory by using lower precision numbers (e.g. by using int8 (1 byte) instead of
fp32 (4 bytes) to represent the model weights and activations.) With this example the model requires
¼ of memory compared to the unquantized version. This optimization allows for deployment on
fewer GPUs, making it more affordable.

Quantization is expected to have minimal impact on model performance. However, it is important to
test the quantized model depending on the use cases to ensure there is no substantial regression in
the quality of the results.

The conversion process in mixed-precision quantization can add overheads that creates sub-optimal
inference latencies, especially for medium-sized models.

Possible libraries that can be leveraged for quantization are Bitsandbytes, GPTQ and Deepspeed.

Compression (e.g. Quantization)

Attention Layer Optimization

Attention is at the heart of the transformer architecture, but it requires substantial memory and
compute. Standard attention scales quadratically as the number of tokens grows, which requires
extra GPU memory to cache intermediate (KV) results. Memory bandwidth also needs to be
considered as these tensors are moved from GPU memory to the registers of the tensor cores.

Optimization techniques like FlashAttention and PagedAttention reduce the amount of data transfer
in attention. This improves latency and throughput of the attention layer.

These optimizations target specific use cases like those with low batch size or executing on a single
GPU. There is no universal solution for optimizing attention memory.

Data parallelism (DP) replicates the deployment of the model several times and splits incoming requests
across the various replicas of the model. This enables the deployment to absorb a higher number of requests
as they are served in parallel by the model replicas. This doesn’t help oversized models fit on a single GPU. In
that case, users will need to leverage model parallelism.

Data Parallelism (DP)

Hybrid parallelism combines techniques like DP and TP for optimization based on the model size, available
hardware, traffic patterns, and use case. For example, DP and TP can be used together if the model cannot fit
into one GPU (e.g. requiring at least 2 shards) and also replicated to serve a certain inference load.

Libraries like Deepspeed and Parallelformers enable model parallelism.

Hybrid Parallelism

Tensor Parallelism (intra-operation parallelism) is a type of strategy for model parallelism. TP splits the model
horizontally, with each GPU holding a slice. Each GPU is computing a partial result for a slice of the input
tensor that corresponds to the slice of the weights that is loaded. This process requires synchronization to
combine partial results. This technique works best when GPUs are co-located within the same node and
interconnected with high-speed links (e.g. using NVLink).

Tensor Parallelism (TP)

PP (inter-operation parallelism) is another orthogonal approach that doesn’t require a lot of synchronization
among GPUs. This method divides the model vertically, with each GPU processing certain layers. This
pipeline approach creates an assembly line: when one GPU is done computing the corresponding layers, the
intermediate result is sent to the next GPU in the pipeline and so on.

This strategy requires less synchronization which means it can be used inter-node. However, it can suffer
from low utilization and leave all but one GPU idle (bubble). There are ways to get around this bubble. One
technique is staggering multiple requests at different pipeline stages across the GPUs, provided the traffic
patterns permit this. This improves overall throughput.

Pipeline Parallelism (PP)

https://github.com/TimDettmers/bitsandbytes
https://github.com/IST-DASLab/gptq
https://www.deepspeed.ai/tutorials/model-compression/
https://github.com/Dao-AILab/flash-attention
https://vllm.ai/

15

The Practical Guide to Deploying Large Language Models

14

The Practical Guide to Deploying Large Language Models

As we noted earlier, large language models typically have high and variable latency at inference time.
Efficient scheduling is critical for LLMs otherwise the user experience will be poor and users will
complain. There are tradeoffs at different levels of scheduling which we’ll explore next.

Scheduling Optimizations

Request Level Scheduling

Bacth Level Scheduling

Iteration Level Scheduling and Continuous Batching

A standard level of scheduling is at the granularity of the particular request. In this scenario, when
a request arrives at the model server, the request can be served if there is compute space for it. If
there isn’t, it is added to a pending requests queue to be served later. An idle server will execute
requests immediately as it has available compute capacity for it. If there’s subsequent requests that
arrive while the first request is being served, it will cause queueing delays until the first request is
completely finished.

Scheduling at the request level has some characteristics. If compute capacity is available, the
request will be served as fast as possible. If this isn’t addressed, considering that an LLM can take
several seconds to serve a complete request, other incoming requests will incur a high latency until
compute resources become available. So, head-of-line blocking results in high average latency
without abundant servers. GPU utilization is also low due to small batch sizes.

Batch level scheduling improves on request scheduling by grouping requests into batches within a
timeframe and treating them as a single batch for scheduling. This is also referred to as adaptive
batching. The benefits of this technique are:

• Multiple requests can be served at the same time, which reduces the overall average latency
compare to request level scheduling

• Larger batched inputs increase GPU utilization

However, from a scheduling perspective, batches are static. New requests arriving after a batch
starts must wait for the entire batch to finish. So, the longest generation request in that batch will
determine how long it takes to process a batch. This can unnecessarily delay other requests from
being served.

The techniques mentioned above have drawbacks–incoming requests wait idly for ongoing
generations to complete, causing delays and increased latency.

A solution to this issue is dynamic batching at the token iteration level, also called continuous
batching. With this approach, new requests join the active batch for concurrent processing while
finished requests leave the batch as soon as they are done. This ensures all requests progress
efficiently at the same time.

This can be achieved by leveraging iteration level scheduling, which schedules tokens one by one.
After generating each token across the batch, the scheduler modifies the batch accordingly. This
fine-grained dynamic batch adjustment is pioneered by Orca and also implemented in other LLM
serving platforms like vLLM and TGI.

https://www.usenix.org/conference/osdi22/presentation/yu
https://github.com/vllm-project/vllm
https://github.com/huggingface/text-generation-inference/tree/main

17

The Practical Guide to Deploying Large Language Models

16

The Practical Guide to Deploying Large Language Models

Best Practices for Orchestrating LLMs in Production

So far, you’ve explored an overview of LLM architecture along with the challenges that come with
deploying individual LLMs to production. To achieve success in deployment, a balance needs to be
struck between cost, efficiency, latency and throughput.

Now, let’s move on to discuss the key challenges when building a full production application that
utilizes LLMs. In this guide, we won’t focus on fine-tuning. We will assume you have modified a
foundation model to fit your particular use case and can deploy it as a part of a wider application.

Let’s look at an example of a document question answering system. To help you get a better
understanding, the diagram below shows how the data flows through the system:

Data Flows Explained

LangChain

The flow diagram above can be summarized as follows:

1. A question comes in from a user
2. Meta data is added to the request by calling a feature store to get details about the user
3. Next, call an embedding model on the question to get one or more vectors
4. Now, a similarity search is conducted against a vector store that holds vector representations of

internal documents to find a set of candidate documents
5. Once several useful documents are found, we mix them with the original question and construct a

prompt. With the query in hand, we call our LLM and get an answer back
6. Afterwards, we decide whether this answer is the final answer or we need to call the LLM again,

possibly with an altered prompt, while saving the state as we proceed in the loop
7. Finally, when we are confident in the result, we’ll eventually return a final answer to the user

As you can see, building full LLM applications requires integrating a variety of tools. LangChain is the
most popular all-in-one solution to manage:

• LLMs (local or via APIs)
• Prompt templating techniques
• Vector stores
• Feature stores
• Memory and state management
• Agents and tools

Although powerful, LangChain has some challenges when using it to move your application to
production. It provides a large matrix of options which all need to work together. There can
be unexpected problems when tools do not play nicely together or the defined logic has some
unexpected assumptions. Simpler alternatives like simpleaichat (following a blog post by the author)
and minichain might be easier for some use cases.

Guided Prompting

A key subprocess is guided prompting. This is the core process of directing the LLM to solve tasks
while adhering to existing knowledge and constraints. Two interesting projects in this space are
Guidance and LMQL.

https://www.seldon.io/exploring-llm-apps-the-langchain-paradigm
https://github.com/minimaxir/simpleaichat
https://minimaxir.com/2023/07/langchain-problem/
https://github.com/srush/MiniChain
https://github.com/guidance-ai/guidance
https://lmql.ai/

19

The Practical Guide to Deploying Large Language Models

18

The Practical Guide to Deploying Large Language Models

The Guidance program supports parameter input and defined slots for generation with constraints.
Let’s highlight two interesting capabilities that Guidance has. Firstly, when Guidance is used with
a local model, it can optimize inference by caching key-value (KV) attention computations. This
prevents repeat computations when using previously processed prompts. An example illustrating this
is filling in a character definition over repeated model calls as shown below with the generation steps
shown in green.

Another intriguing capability is token healing. Language models map character sequences to
individual tokens, and sometimes tokens overlap with subsets of characters from other tokens. In
their example, they demonstrate how a prompt generating a URL prompt that ends with a colon
can lead to an invalid sequence. Guidance resolves this by modifying the prompt. It removes the
colon from the prompt and ensures that any token starts with a colon as its initial character. This
adjustment ensures that the model produces outputs that match the intended format, as
shown below:

For the example above to work like it does with KV caching it requires a close integration with the
inference server.

Guidance

Guidance offers a templating language using handlebars templating to incrementally construct
prompts with associated restrictions on LLM-generated text. An example from their docs is shown
below where a proverb is generated while adhering to certain restrictions:

21

The Practical Guide to Deploying Large Language Models

20

The Practical Guide to Deploying Large Language Models

The key areas highlighted are:

These checks could also be incorporated into real-time inference flows to change the output of the
individual request if we believe there are outliers, toxicity, or unexpected changes in sentiment.

Moving on to LMQL, it also provides a templating language for guided generation, an example of
which is shown below:

Now, let’s move back to the wider application data flow. When you place your application into
production, the data flow diagram we showed above can be annotated with several points where
monitoring is crucial for making sure there is correct and safe operation of the application. You can
see this in the diagram on the next page:

LMQL allows adding constraints to control generated text. This can be seen above providing
constraints that restrict length and format of the generated joke and punchline.

One interesting feature of LMQL is the ability to do scripted beam search, which searches over
multiple generation points in the prompt template. Again, this requires close integration between the
guidance engine and the inference server.

LMQL

Monitoring in Data Flows

Monitoring for drift and outliers
from the question embeddings and
document similarity search results.

Monitoring the questions and answers
in isolation for issues like: toxicity,
sentiment changes, hallucinations, and
conversation length.

Monitor Drift Monitor Q + A

23

The Practical Guide to Deploying Large Language Models

22

The Practical Guide to Deploying Large Language Models

LangSmith, a recently created offering by LangChain, provides a more API-based approach for
post-hoc analysis. Organizations should invest in these tools to make sure their LLM-based
applications are performing properly and can be clearly audited.

To sum up, production-ready LLM applications need scalable guided inference with monitoring
and debugging.

The industry still has some way to progress before a solution is fully ready.

The data flow paradigm of clearly exposing the data at any point in the transformation steps from
question to answer is a key feature to Seldon’s data-centric approach to machine learning pipelines.
This is exemplified in Seldon Core V2, which provides the ability to create well-defined data flows
containing ML models along with monitoring components.

Empowering your Business with LLMs

Large language Models represent a seismic shift for organizations across every industry. These
powerful AI systems have demonstrated immense potential to transform workflows, enhance the
customer service experience, and provide actionable insights from data. Organizations that fail to
embrace LLMs as part of their business strategy risk falling behind their competition.

Deploying Large Language Models into production requires careful planning and execution to realize
benefits while mitigating risks. As covered in the first section, LLMs have diverse applications
ranging from content generation to search optimization when combined with the right prompts,
vector database, agents, and tools.

However, challenges arise in real-world deployment around bias, safety, robustness, and cost.
Without proper monitoring and guardrails, LLMs can generate toxic, incorrect, or meaningless
outputs. We’ve provided best practices to address these challenges, including using tools such as
LangChain, Guidance, or LMQL.

When thoughtfully orchestrated, LLMs become powerful assets for businesses. The key is
implementing them responsibly, with governance and infrastructure to ensure quality control. Are
you ready to unlock their game-changing capabilities?

https://blog.langchain.dev/announcing-langsmith/

The Practical Guide to Deploying Large Language Models

24

About Seldon

Seldon is the world’s leading MLOps platform trusted by the most innovative MLOps teams. We
are on a mission to accelerate the adoption of ML to improve business performance and manage
risk. Our platform decreases time to value and drives cost savings through efficiency gains and by
augmenting data science skills and workflows.

Interested in seeing why Seldon is trusted by the world’s leading MLOps teams? Request a demo and
an expert from our team will be happy to schedule one for you.

Want to chat to other ML professionals about LLMs?

Join our Slack community and post in the #alibi-detect channel.

We’d love to hear from you!
Here’s how to connect with us:

Sign up for our MLOps monthly newsletter

Request a demo

http://www.seldon.io/demo
https://seldondev.slack.com/join/shared_invite/zt-vejg6ttd-ksZiQs3O_HOtPQsen_labg#/shared-invite/email
https://www.seldon.io/developers/community/slack-community
https://www.seldon.io/mlops-newsletter
https://www.linkedin.com/company/2028462/admin/feed/posts/
https://twitter.com/seldon_io
https://github.com/SeldonIO
https://www.linkedin.com/company/seldon/
https://www.linkedin.com/company/seldon/
https://twitter.com/seldon_io
https://github.com/SeldonIO

	LinkedIn:
	Twitter:
	GitHub:

